DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI concepts on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes support finding out to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key distinguishing feature is its support learning (RL) action, which was used to improve the design's reactions beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately improving both relevance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, suggesting it's equipped to break down complex inquiries and reason through them in a detailed way. This assisted reasoning procedure permits the model to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually caught the market's attention as a flexible text-generation model that can be incorporated into numerous workflows such as representatives, logical thinking and information analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, allowing efficient inference by routing queries to the most pertinent specialist "clusters." This technique enables the design to specialize in various problem domains while maintaining general effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to mimic the habits and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher model.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and assess models against essential safety criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit boost, develop a limitation boost demand and reach out to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Establish consents to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent damaging content, and evaluate designs against crucial security criteria. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After receiving the design's output, another is applied. If the output passes this final check, it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and choose the DeepSeek-R1 model.
The model detail page offers necessary details about the design's abilities, rates structure, and execution standards. You can discover detailed usage guidelines, consisting of sample API calls and code snippets for combination. The model supports different text generation tasks, including content creation, code generation, and question answering, utilizing its reinforcement learning optimization and CoT reasoning abilities.
The page also includes implementation options and licensing details to assist you start with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, pick Deploy.
You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, enter a number of instances (between 1-100).
6. For Instance type, select your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, pipewiki.org you may want to evaluate these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the deployment is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play ground to access an interactive user interface where you can experiment with various prompts and change design specifications like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For instance, content for inference.
This is an outstanding way to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play area provides immediate feedback, helping you comprehend how the model reacts to different inputs and letting you tweak your prompts for ideal results.
You can rapidly test the model in the play area through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference using a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a request to generate text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers two hassle-free approaches: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you select the technique that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design browser shows available models, with details like the company name and design capabilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card shows key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the design
5. Choose the design card to see the design details page.
The model details page consists of the following details:
- The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage standards
Before you release the design, it's suggested to examine the design details and license terms to validate compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, utilize the automatically generated name or produce a customized one.
- For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the number of circumstances (default: 1). Selecting proper circumstances types and counts is essential for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the design.
The deployment process can take several minutes to complete.
When deployment is total, your endpoint status will alter to InService. At this point, the model is ready to accept reasoning requests through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is total, you can invoke the design using a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:
Tidy up
To prevent undesirable charges, complete the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations. - In the Managed deployments section, locate the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the proper implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct innovative solutions using AWS services and accelerated calculate. Currently, he is focused on establishing methods for fine-tuning and enhancing the reasoning performance of large language designs. In his free time, Vivek enjoys hiking, watching films, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that assist customers accelerate their AI journey and unlock company worth.