DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion specifications to build, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that uses support discovering to boost thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential differentiating function is its support knowing (RL) action, which was used to fine-tune the design's responses beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adapt more successfully to user feedback and objectives, eventually improving both importance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, implying it's equipped to break down complicated queries and reason through them in a detailed manner. This assisted reasoning procedure permits the model to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation design that can be integrated into numerous workflows such as representatives, sensible thinking and data analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion parameters, making it possible for effective reasoning by routing questions to the most relevant professional "clusters." This technique allows the model to concentrate on different problem domains while maintaining overall effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 model, using it as a teacher model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and evaluate models against crucial security criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, develop a limitation boost request and reach out to your account team.
Because you will be deploying this design with Amazon Bedrock Guardrails, wakewiki.de make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For guidelines, see Set up approvals to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, prevent harmful material, and evaluate models against key safety criteria. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic circulation involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 design.
The model detail page supplies important details about the design's capabilities, rates structure, and implementation guidelines. You can discover detailed use guidelines, consisting of sample API calls and code bits for combination. The design supports different text generation jobs, including content production, code generation, and question answering, using its reinforcement finding out optimization and CoT reasoning capabilities.
The page also includes release options and licensing details to assist you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be prompted to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, go into a number of instances (in between 1-100).
6. For Instance type, choose your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up advanced security and infrastructure settings, including virtual personal cloud (VPC) networking, service function approvals, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you might wish to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start using the model.
When the deployment is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play area to access an interactive interface where you can experiment with various triggers and change model parameters like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, content for reasoning.
This is an excellent way to check out the model's reasoning and text generation abilities before integrating it into your applications. The playground offers instant feedback, helping you understand how the design reacts to various inputs and letting you fine-tune your triggers for optimum results.
You can rapidly test the design in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform inference using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends a demand to generate text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart offers two convenient methods: utilizing the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you choose the method that finest matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design web browser shows available designs, with details like the company name and model capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card shows key details, including:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if appropriate), indicating that this design can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design
5. Choose the design card to see the design details page.
The design details page includes the following details:
- The model name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specs.
- Usage standards
Before you release the model, it's advised to evaluate the model details and license terms to confirm compatibility with your use case.
6. Choose Deploy to proceed with deployment.
7. For Endpoint name, use the automatically created name or develop a customized one.
- For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of circumstances (default: 1). Selecting suitable instance types and counts is important for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For this design, we highly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the design.
The implementation procedure can take a number of minutes to complete.
When deployment is total, your endpoint status will alter to InService. At this point, the model is prepared to accept reasoning demands through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can conjure up the model utilizing a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the required AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:
Clean up
To avoid undesirable charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the model using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace releases. - In the Managed deployments area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative options using AWS services and sped up calculate. Currently, he is focused on for fine-tuning and optimizing the inference performance of large language designs. In his totally free time, Vivek takes pleasure in hiking, seeing motion pictures, and trying various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing options that assist customers accelerate their AI journey and unlock business worth.