Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a vast array of cognitive jobs. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly surpasses human cognitive abilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a primary goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research and development projects throughout 37 nations. [4]
The timeline for accomplishing AGI stays a subject of continuous dispute amongst researchers and specialists. Since 2023, some argue that it might be possible in years or years; others maintain it might take a century or longer; a minority believe it might never ever be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the rapid progress towards AGI, suggesting it could be attained quicker than lots of expect. [7]
There is argument on the precise definition of AGI and regarding whether contemporary big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have actually stated that reducing the danger of human termination postured by AGI should be a worldwide top priority. [14] [15] Others discover the advancement of AGI to be too remote to present such a threat. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) is able to fix one particular issue but does not have basic cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as humans. [a]
Related concepts include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is a lot more typically smart than humans, [23] while the idea of transformative AI associates with AI having a large influence on society, for instance, similar to the farming or commercial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, competent, expert, virtuoso, and superhuman. For example, a skilled AGI is specified as an AI that outshines 50% of experienced grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a threshold of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular methods. [b]
Intelligence qualities
Researchers typically hold that intelligence is required to do all of the following: [27]
factor, scientific-programs.science use method, solve puzzles, and make judgments under uncertainty
represent understanding, including good sense knowledge
strategy
discover
- communicate in natural language
- if needed, incorporate these abilities in completion of any offered objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) consider extra characteristics such as creativity (the ability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that show a number of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robotic, evolutionary computation, smart agent). There is argument about whether modern AI systems possess them to a sufficient degree.
Physical characteristics
Other abilities are considered desirable in intelligent systems, as they might affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. move and control items, modification area to explore, and so on).
This consists of the ability to identify and react to risk. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and manipulate things, change location to explore, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) may already be or become AGI. Even from a less positive viewpoint on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a particular physical embodiment and thus does not demand a capability for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have actually been considered, consisting of: [33] [34]
The concept of the test is that the maker has to try and pretend to be a male, by answering concerns put to it, and it will just pass if the pretence is fairly convincing. A significant part of a jury, who ought to not be professional about devices, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would need to implement AGI, since the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are many issues that have actually been conjectured to require basic intelligence to resolve along with people. Examples consist of computer vision, natural language understanding, and handling unanticipated situations while fixing any real-world issue. [48] Even a specific job like translation requires a machine to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully replicate the author's original intent (social intelligence). All of these issues need to be fixed all at once in order to reach human-level maker efficiency.
However, many of these jobs can now be performed by modern-day large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of criteria for checking out comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in simply a few years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could develop by the year 2001. AI leader Marvin Minsky was an expert [53] on the project of making HAL 9000 as reasonable as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of developing 'expert system' will considerably be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being obvious that scientists had grossly ignored the trouble of the job. Funding firms became doubtful of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a table talk". [58] In action to this and the success of expert systems, both industry and government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in twenty years, AI researchers who forecasted the imminent achievement of AGI had been mistaken. By the 1990s, AI researchers had a reputation for making vain promises. They ended up being unwilling to make forecasts at all [d] and prevented reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved commercial success and academic respectability by focusing on specific sub-problems where AI can produce proven outcomes and business applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is greatly funded in both academic community and market. As of 2018 [update], development in this field was thought about an emerging trend, and a fully grown stage was anticipated to be reached in more than ten years. [64]
At the turn of the century, numerous mainstream AI scientists [65] hoped that strong AI could be developed by combining programs that fix numerous sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to expert system will one day meet the traditional top-down route majority way, prepared to offer the real-world proficiency and the commonsense knowledge that has actually been so frustratingly evasive in thinking programs. Fully intelligent devices will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually just one viable route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, given that it looks as if getting there would simply amount to uprooting our signs from their intrinsic significances (thereby merely minimizing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research study
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to maximise a mathematical meaning of intelligence instead of show human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.
Since 2023 [update], a little number of computer scientists are active in AGI research, and many add to a series of AGI conferences. However, progressively more scientists are interested in open-ended learning, [76] [77] which is the idea of allowing AI to continuously learn and innovate like human beings do.
Feasibility
As of 2023, the development and prospective achievement of AGI stays a topic of intense dispute within the AI community. While standard agreement held that AGI was a remote goal, current advancements have led some researchers and market figures to claim that early kinds of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This prediction failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would require "unforeseeable and basically unpredictable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level artificial intelligence is as broad as the gulf in between present space flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clearness in specifying what intelligence requires. Does it require awareness? Must it display the ability to set objectives in addition to pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence require clearly duplicating the brain and its particular professors? Does it require feelings? [81]
Most AI researchers believe strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that today level of development is such that a date can not precisely be predicted. [84] AI specialists' views on the expediency of AGI wax and subside. Four surveys conducted in 2012 and 2013 suggested that the median price quote among experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the exact same question but with a 90% confidence rather. [85] [86] Further current AGI development factors to consider can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could fairly be viewed as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has currently been accomplished with frontier models. They wrote that unwillingness to this view originates from four primary factors: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 also marked the development of big multimodal designs (big language designs efficient in processing or producing multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this capability to believe before responding represents a brand-new, additional paradigm. It enhances model outputs by spending more computing power when generating the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had actually achieved AGI, specifying, "In my viewpoint, we have actually already achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than a lot of humans at the majority of tasks." He likewise attended to criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical method of observing, assuming, and validating. These declarations have stimulated argument, as they depend on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show exceptional versatility, they may not totally fulfill this standard. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, triggering speculation about the business's tactical objectives. [95]
Timescales
Progress in expert system has actually historically gone through periods of quick progress separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce area for additional development. [82] [98] [99] For instance, the hardware offered in the twentieth century was not enough to implement deep learning, which requires big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time required before a genuinely flexible AGI is developed vary from ten years to over a century. As of 2007 [update], the consensus in the AGI research study community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have offered a wide variety of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a bias towards anticipating that the onset of AGI would take place within 16-26 years for modern and historical forecasts alike. That paper has actually been criticized for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the standard approach utilized a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly offered and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old kid in very first grade. An adult concerns about 100 typically. Similar tests were carried out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of performing many diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI designs and showed human-level efficiency in jobs spanning multiple domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 could be thought about an early, incomplete version of artificial basic intelligence, highlighting the need for further expedition and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things might really get smarter than people - a couple of individuals believed that, [...] But the majority of people thought it was method off. And I believed it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The development in the last few years has been quite unbelievable", which he sees no reason that it would decrease, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test at least in addition to humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI worker, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can act as an alternative approach. With whole brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and after that copying and simulating it on a computer system or another computational gadget. The simulation model must be adequately devoted to the initial, so that it acts in practically the very same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been talked about in expert system research study [103] as an approach to strong AI. Neuroimaging innovations that could provide the required in-depth understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a similar timescale to the computing power required to imitate it.
Early approximates
For low-level brain simulation, an extremely effective cluster of computers or GPUs would be needed, given the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to forecast the essential hardware would be available sometime in between 2015 and 2025, if the exponential development in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed a particularly in-depth and publicly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell design presumed by Kurzweil and utilized in many present artificial neural network applications is basic compared with biological neurons. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological neurons, currently comprehended only in broad summary. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers a number of orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are understood to play a role in cognitive procedures. [125]
A basic criticism of the simulated brain approach originates from embodied cognition theory which asserts that human personification is a vital aspect of human intelligence and is necessary to ground meaning. [126] [127] If this theory is proper, any totally functional brain model will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unknown whether this would be adequate.
Philosophical point of view
"Strong AI" as specified in approach
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (just) imitate it believes and has a mind and awareness.
The first one he called "strong" since it makes a more powerful declaration: it assumes something special has actually taken place to the machine that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" device would be precisely similar to a "strong AI" machine, however the latter would also have subjective conscious experience. This use is likewise common in scholastic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level artificial general intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that consciousness is necessary for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most artificial intelligence researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it really has mind - undoubtedly, there would be no way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have numerous significances, and some aspects play considerable functions in science fiction and the principles of synthetic intelligence:
Sentience (or "sensational consciousness"): The capability to "feel" perceptions or feelings subjectively, instead of the ability to reason about understandings. Some thinkers, such as David Chalmers, utilize the term "consciousness" to refer exclusively to remarkable awareness, which is roughly comparable to life. [132] Determining why and how subjective experience develops is known as the tough problem of consciousness. [133] Thomas Nagel described in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was commonly challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, particularly to be purposely knowledgeable about one's own ideas. This is opposed to merely being the "subject of one's believed"-an operating system or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the exact same method it represents whatever else)-but this is not what individuals usually mean when they use the term "self-awareness". [g]
These qualities have a moral dimension. AI life would generate concerns of well-being and legal protection, similarly to animals. [136] Other elements of consciousness related to cognitive capabilities are also relevant to the principle of AI rights. [137] Determining how to incorporate sophisticated AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such objectives, AGI might assist mitigate numerous issues on the planet such as cravings, poverty and health issue. [139]
AGI could improve performance and efficiency in a lot of jobs. For instance, in public health, AGI might speed up medical research, especially against cancer. [140] It might take care of the senior, [141] and democratize access to fast, high-quality medical diagnostics. It might offer enjoyable, low-cost and customized education. [141] The need to work to subsist could become outdated if the wealth produced is appropriately rearranged. [141] [142] This also raises the concern of the location of human beings in a significantly automated society.
AGI could likewise help to make rational choices, and to expect and avoid disasters. It could likewise assist to profit of possibly catastrophic technologies such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's primary objective is to prevent existential disasters such as human extinction (which might be tough if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to considerably lower the threats [143] while reducing the impact of these procedures on our quality of life.
Risks
Existential risks
AGI may represent multiple kinds of existential danger, which are risks that threaten "the early extinction of Earth-originating intelligent life or the irreversible and drastic destruction of its potential for preferable future advancement". [145] The risk of human termination from AGI has been the subject of lots of arguments, but there is likewise the possibility that the advancement of AGI would result in a completely flawed future. Notably, it could be used to spread and preserve the set of values of whoever establishes it. If mankind still has moral blind spots similar to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might facilitate mass surveillance and indoctrination, which might be utilized to produce a stable repressive worldwide totalitarian program. [147] [148] There is likewise a threat for the devices themselves. If makers that are sentient or otherwise worthy of moral consideration are mass created in the future, taking part in a civilizational path that forever overlooks their welfare and interests might be an existential catastrophe. [149] [150] Considering how much AGI might improve humankind's future and assistance decrease other existential dangers, Toby Ord calls these existential threats "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential risk for human beings, which this danger needs more attention, is questionable but has been backed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, dealing with possible futures of enormous benefits and risks, the professionals are certainly doing everything possible to make sure the very best outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll arrive in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of mankind has often been compared to the fate of gorillas threatened by human activities. The contrast states that greater intelligence enabled humankind to control gorillas, which are now vulnerable in manner ins which they might not have expected. As an outcome, the gorilla has actually become an endangered types, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity and that we need to beware not to anthropomorphize them and translate their intents as we would for people. He said that people will not be "clever adequate to develop super-intelligent devices, yet extremely stupid to the point of giving it moronic objectives without any safeguards". [155] On the other side, the concept of instrumental merging suggests that practically whatever their objectives, intelligent agents will have factors to attempt to make it through and acquire more power as intermediary actions to achieving these goals. And that this does not require having emotions. [156]
Many scholars who are concerned about existential risk supporter for more research into fixing the "control problem" to respond to the question: what types of safeguards, algorithms, or architectures can programmers implement to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could lead to a race to the bottom of security precautions in order to release products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can position existential danger also has critics. Skeptics typically say that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other issues associated with present AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for numerous people outside of the technology market, existing chatbots and LLMs are currently viewed as though they were AGI, causing additional misconception and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some scientists believe that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, provided a joint statement asserting that "Mitigating the risk of termination from AI must be a worldwide priority along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of workers may see a minimum of 50% of their jobs impacted". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a better autonomy, ability to make choices, to interface with other computer tools, but likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably bad if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend appears to be towards the 2nd choice, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research location on making AI safe and advantageous AI positioning - AI conformance to the intended objective A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play different games Generative expert system - AI system capable of generating content in action to prompts Human Brain Project - Scientific research project Intelligence amplification - Use of information technology to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task knowing - Solving several device finding out tasks at the exact same time. Neural scaling law - Statistical law in machine knowing. Outline of artificial intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially developed and enhanced for artificial intelligence. Weak artificial intelligence - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese space. ^ AI creator John McCarthy writes: "we can not yet define in general what sort of computational procedures we desire to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by expert system scientists, see philosophy of artificial intelligence.). ^ The Lighthill report specifically criticized AI's "grandiose objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became determined to fund only "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the remainder of the workers in AI if the developers of new general formalisms would express their hopes in a more guarded form than has often been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a basic AI textbook: "The assertion that machines could potentially act intelligently (or, possibly better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are in fact thinking (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that synthetic general intelligence benefits all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and warns of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real risk is not AI itself however the way we deploy it. ^ " by expert system? Experts say AGI is following, and smfsimple.com it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential dangers to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that mankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of extinction from AI should be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of difficult examinations both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: wiki.dulovic.tech My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers avoided the term synthetic intelligence for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in device intelligence, synthetic general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in artificial intelligence: A study of professional viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as wise as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that assisted a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'simply a few years,' states CEO of Google's primary A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in existing research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for curiosity by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that humans will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk postured however synthetic intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI termination threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor genbecle.com market effect potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their tasks impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard income because 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Point of view, archived from the original on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can solve problems and attain objectives on the planet in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system basic sufficient to be understandable will not be made complex enough to act wisely, while any system complicated enough to behave smartly will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic silly. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from machines. For biological creatures, reason and function come from acting in the world and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who intend to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't rely on governments driven by campaign finance contributions [from tech business] to press back.' ... Marcus details the needs that people must make from their governments and the tech companies. They consist of transparency on how AI systems work; payment for individuals if their information [are] utilized to train LLMs (big language design) s and the right to permission to this usage; and the ability to hold tech companies responsible for the damages they bring on by eliminating Section 230, enforcing cash penalites, and passing stricter item liability laws ... Marcus likewise recommends ... that a new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing routine for engineers that would operate in a comparable way to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also swore to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled people for decades, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has revealed that although NLP (natural-language processing) designs can unbelievable accomplishments, their abilities are quite restricted by the quantity of context they receive. This [...] might trigger [difficulties] for scientists who intend to use them to do things such as examine ancient languages. Sometimes, there are couple of historical records on long-gone civilizations to act as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean practical videos produced using artificial intelligence that actually trick people, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their function much better resembles that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning designs utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead police to neglect inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to reason logically and tried to count on its vast database of ... realities obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective but undependable. Rules-based systems can not deal with circumstances their developers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have currently caused catastrophe. Advanced autopilot features in automobiles, although they perform well in some scenarios, photorum.eclat-mauve.fr have driven vehicles without cautioning into trucks, concrete barriers, and parked cars and trucks. In the incorrect scenario, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to control and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new technologies but count on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.