Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
  • Sign in / Register
W
wtfbellingham
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 58
    • Issues 58
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Amelia Guerin
  • wtfbellingham
  • Issues
  • #58

Closed
Open
Opened Apr 13, 2025 by Amelia Guerin@ameliaguerin38
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement finding out to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key distinguishing function is its reinforcement knowing (RL) action, which was used to improve the model's actions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust more successfully to user feedback and goals, eventually boosting both significance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, meaning it's equipped to break down intricate inquiries and factor through them in a detailed way. This guided thinking process enables the design to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has caught the market's attention as a flexible text-generation model that can be incorporated into numerous workflows such as representatives, sensible reasoning and data interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, allowing effective inference by routing inquiries to the most pertinent expert "clusters." This approach permits the design to concentrate on various issue domains while maintaining overall effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective designs to mimic the behavior and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this design with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and assess models against key safety requirements. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation increase, create a limit boost request and reach out to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Set up authorizations to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, avoid damaging material, and examine models against crucial safety requirements. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic flow includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 model.

The design detail page offers essential details about the design's abilities, pricing structure, and implementation standards. You can discover detailed use instructions, including sample API calls and code snippets for combination. The model supports different text generation tasks, consisting of material development, code generation, and concern answering, utilizing its support discovering optimization and CoT reasoning capabilities. The page likewise includes deployment choices and licensing details to assist you get begun with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, select Deploy.

You will be triggered to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For it-viking.ch Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, get in a number of circumstances (in between 1-100). 6. For Instance type, select your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can set up advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function approvals, and encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you may desire to examine these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the release is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive user interface where you can explore different triggers and adjust design parameters like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, material for reasoning.

This is an excellent way to check out the model's thinking and text generation abilities before incorporating it into your applications. The play ground offers immediate feedback, assisting you comprehend how the design responds to various inputs and letting you tweak your prompts for optimal results.

You can rapidly check the design in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform inference using a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends out a demand to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient approaches: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you choose the approach that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser displays available models, with details like the company name and model capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if applicable), indicating that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to view the design details page.

    The design details page consists of the following details:

    - The model name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details. - Technical requirements.
  • Usage guidelines

    Before you deploy the design, it's advised to examine the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the immediately created name or create a customized one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of circumstances (default: 1). Selecting proper instance types and counts is essential for cost and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The implementation process can take several minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this point, yewiki.org the design is ready to accept reasoning demands through the endpoint. You can keep track of the implementation development on the SageMaker console Endpoints page, which will show appropriate metrics and . When the deployment is total, you can invoke the model utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid unwanted charges, finish the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments.
  5. In the Managed releases section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative services utilizing AWS services and accelerated compute. Currently, he is concentrated on developing strategies for fine-tuning and optimizing the inference efficiency of large language designs. In his downtime, Vivek enjoys hiking, seeing movies, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that assist customers accelerate their AI journey and unlock service value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: ameliaguerin38/wtfbellingham#58