Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities across a large range of cognitive tasks. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly exceeds human cognitive abilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a primary objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and throughout 37 nations. [4]
The timeline for accomplishing AGI remains a topic of continuous argument among scientists and specialists. Since 2023, some argue that it may be possible in years or years; others keep it may take a century or longer; a minority think it may never be attained; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the rapid development towards AGI, recommending it could be attained sooner than lots of expect. [7]
There is dispute on the exact definition of AGI and concerning whether modern-day large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have stated that reducing the threat of human extinction postured by AGI needs to be a global concern. [14] [15] Others find the development of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, yewiki.org or basic intelligent action. [21]
Some academic sources schedule the term "strong AI" for computer programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular problem however lacks general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as human beings. [a]
Related principles consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is much more generally smart than human beings, [23] while the notion of transformative AI associates with AI having a large impact on society, for instance, comparable to the farming or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, competent, expert, virtuoso, and superhuman. For example, a competent AGI is specified as an AI that outshines 50% of competent grownups in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular approaches. [b]
Intelligence characteristics
Researchers typically hold that intelligence is needed to do all of the following: [27]
factor, use technique, fix puzzles, and make judgments under uncertainty
represent knowledge, consisting of sound judgment knowledge
plan
find out
- communicate in natural language
- if required, incorporate these abilities in completion of any offered objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about additional traits such as creativity (the capability to form unique psychological images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit much of these abilities exist (e.g. see computational creativity, automated thinking, decision support system, robotic, evolutionary calculation, intelligent agent). There is debate about whether modern AI systems have them to an appropriate degree.
Physical qualities
Other capabilities are thought about preferable in intelligent systems, as they may impact intelligence or aid in its expression. These include: [30]
- the ability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and manipulate items, modification area to explore, etc).
This includes the capability to discover and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. move and control items, change place to check out, and so on) can be preferable for some intelligent systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may already be or become AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and thus does not require a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have been thought about, including: [33] [34]
The concept of the test is that the device needs to try and pretend to be a guy, by answering questions put to it, and it will only pass if the pretence is fairly persuading. A substantial portion of a jury, who must not be expert about machines, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would require to carry out AGI, due to the fact that the service is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have been conjectured to require basic intelligence to fix in addition to people. Examples include computer vision, natural language understanding, and dealing with unexpected circumstances while solving any real-world issue. [48] Even a specific task like translation needs a machine to check out and compose in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully recreate the author's initial intent (social intelligence). All of these problems need to be fixed at the same time in order to reach human-level machine performance.
However, a lot of these tasks can now be carried out by modern large language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous standards for forum.altaycoins.com checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in just a few years. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might develop by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as reasonable as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of developing 'artificial intelligence' will considerably be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that started in 1984), and thatswhathappened.wiki Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, engel-und-waisen.de it ended up being obvious that researchers had grossly underestimated the problem of the task. Funding companies became skeptical of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a casual discussion". [58] In action to this and the success of specialist systems, both market and federal government pumped cash into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in 20 years, AI researchers who predicted the impending accomplishment of AGI had actually been misinterpreted. By the 1990s, AI scientists had a track record for making vain pledges. They ended up being hesitant to make predictions at all [d] and prevented reference of "human level" artificial intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved industrial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology industry, and research study in this vein is heavily moneyed in both academic community and market. As of 2018 [update], development in this field was considered an emerging trend, and a mature phase was expected to be reached in more than 10 years. [64]
At the turn of the century, many traditional AI researchers [65] hoped that strong AI could be developed by combining programs that fix different sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to expert system will one day fulfill the conventional top-down route majority method, ready to provide the real-world skills and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully smart makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is actually only one feasible route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, considering that it looks as if getting there would simply amount to uprooting our signs from their intrinsic significances (thus simply reducing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy objectives in a large range of environments". [68] This type of AGI, characterized by the ability to maximise a mathematical meaning of intelligence instead of display human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a variety of visitor lecturers.
Since 2023 [update], a little number of computer system researchers are active in AGI research, and numerous add to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the concept of enabling AI to continuously find out and innovate like humans do.
Feasibility
As of 2023, the advancement and possible achievement of AGI stays a topic of extreme debate within the AI neighborhood. While conventional consensus held that AGI was a distant goal, recent developments have actually led some researchers and industry figures to claim that early types of AGI may already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would need "unforeseeable and essentially unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level expert system is as large as the gulf in between current area flight and useful faster-than-light spaceflight. [80]
An additional obstacle is the absence of clearness in defining what intelligence requires. Does it require awareness? Must it show the capability to set goals as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence require explicitly duplicating the brain and its particular professors? Does it require emotions? [81]
Most AI scientists believe strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that today level of development is such that a date can not properly be forecasted. [84] AI experts' views on the feasibility of AGI wax and wane. Four surveys conducted in 2012 and 2013 suggested that the average price quote among experts for when they would be 50% confident AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% answered with "never" when asked the same question but with a 90% confidence instead. [85] [86] Further present AGI development considerations can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong predisposition towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it could reasonably be considered as an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of human beings on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has actually currently been attained with frontier designs. They wrote that hesitation to this view comes from four main factors: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 also marked the development of large multimodal models (big language designs efficient in processing or producing multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time believing before they react". According to Mira Murati, this capability to believe before reacting represents a new, extra paradigm. It improves model outputs by investing more computing power when creating the answer, whereas the model scaling paradigm improves outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had attained AGI, mentioning, "In my viewpoint, we have already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than a lot of humans at most tasks." He likewise attended to criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific method of observing, hypothesizing, and validating. These declarations have actually stimulated dispute, as they depend on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate exceptional adaptability, they may not completely meet this requirement. Notably, Kazemi's comments came shortly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, triggering speculation about the company's strategic objectives. [95]
Timescales
Progress in artificial intelligence has actually historically gone through durations of rapid progress separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to develop space for more progress. [82] [98] [99] For example, the hardware available in the twentieth century was not adequate to carry out deep learning, which requires large numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that price quotes of the time needed before a genuinely versatile AGI is constructed vary from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually provided a large range of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the onset of AGI would happen within 16-26 years for contemporary and historic predictions alike. That paper has actually been slammed for how it classified opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional technique used a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. A grownup comes to about 100 usually. Similar tests were performed in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing many varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, competing that it showed more general intelligence than previous AI designs and demonstrated human-level performance in jobs covering multiple domains, such as mathematics, coding, and law. This research triggered an argument on whether GPT-4 could be considered an early, insufficient variation of artificial basic intelligence, highlighting the need for additional expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The concept that this stuff might really get smarter than individuals - a few people believed that, [...] But many people believed it was way off. And I believed it was way off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The development in the last few years has been pretty unbelievable", and that he sees no reason it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test at least as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI worker, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is thought about the most appealing path to AGI, [116] [117] entire brain emulation can serve as an alternative technique. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and then copying and simulating it on a computer system or another computational device. The simulation model need to be adequately faithful to the initial, so that it behaves in almost the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been talked about in expert system research study [103] as a method to strong AI. Neuroimaging innovations that might provide the required detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will appear on a similar timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, provided the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For comparison, if a "computation" was comparable to one "floating-point operation" - a measure used to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the necessary hardware would be available at some point between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed a particularly comprehensive and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell model presumed by Kurzweil and utilized in lots of present synthetic neural network implementations is easy compared with biological nerve cells. A brain simulation would likely need to record the in-depth cellular behaviour of biological nerve cells, presently understood only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are known to play a function in cognitive procedures. [125]
A fundamental criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is a necessary element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is correct, any completely functional brain model will need to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would be sufficient.
Philosophical point of view
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between two hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (just) imitate it believes and has a mind and consciousness.
The very first one he called "strong" due to the fact that it makes a more powerful statement: it presumes something special has happened to the maker that surpasses those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" maker, but the latter would likewise have subjective conscious experience. This use is likewise typical in scholastic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level artificial general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that awareness is needed for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it really has mind - undoubtedly, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have various significances, and some aspects play substantial functions in sci-fi and the ethics of expert system:
Sentience (or "incredible awareness"): The ability to "feel" perceptions or feelings subjectively, instead of the capability to reason about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer specifically to incredible awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience develops is referred to as the hard problem of awareness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished life, though this claim was extensively challenged by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different person, particularly to be consciously knowledgeable about one's own ideas. This is opposed to merely being the "topic of one's thought"-an os or debugger has the ability to be "aware of itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what people typically indicate when they utilize the term "self-awareness". [g]
These traits have an ethical dimension. AI life would trigger concerns of welfare and legal defense, similarly to animals. [136] Other aspects of awareness related to cognitive capabilities are likewise relevant to the idea of AI rights. [137] Finding out how to incorporate advanced AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI could have a variety of applications. If oriented towards such objectives, AGI could assist mitigate numerous problems in the world such as cravings, hardship and illness. [139]
AGI could improve productivity and efficiency in most jobs. For example, in public health, AGI might speed up medical research study, especially versus cancer. [140] It might look after the elderly, [141] and equalize access to quick, premium medical diagnostics. It might provide enjoyable, low-cost and customized education. [141] The need to work to subsist could become obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the question of the place of human beings in a drastically automated society.
AGI might also assist to make logical choices, and to anticipate and prevent catastrophes. It might also help to profit of potentially disastrous technologies such as nanotechnology or climate engineering, while preventing the associated risks. [143] If an AGI's main goal is to prevent existential catastrophes such as human termination (which might be difficult if the Vulnerable World Hypothesis turns out to be real), [144] it might take measures to significantly decrease the dangers [143] while lessening the impact of these procedures on our lifestyle.
Risks
Existential dangers
AGI may represent numerous kinds of existential threat, which are threats that threaten "the premature termination of Earth-originating smart life or the permanent and drastic destruction of its capacity for desirable future advancement". [145] The threat of human termination from AGI has actually been the subject of lots of debates, however there is also the possibility that the development of AGI would result in a permanently problematic future. Notably, it could be utilized to spread and maintain the set of worths of whoever establishes it. If humanity still has moral blind spots comparable to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI could assist in mass security and brainwashing, which could be utilized to produce a steady repressive around the world totalitarian regime. [147] [148] There is likewise a risk for the devices themselves. If devices that are sentient or otherwise deserving of ethical factor to consider are mass created in the future, taking part in a civilizational course that forever neglects their welfare and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve humankind's future and aid lower other existential dangers, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential risk for people, and that this threat requires more attention, is controversial however has actually been endorsed in 2023 by many public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of enormous advantages and risks, the professionals are certainly doing whatever possible to make sure the very best result, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll show up in a couple of years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of humankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence allowed humanity to dominate gorillas, which are now susceptible in methods that they could not have actually prepared for. As an outcome, the gorilla has become an endangered species, not out of malice, however simply as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we need to beware not to anthropomorphize them and translate their intents as we would for human beings. He said that individuals won't be "smart sufficient to develop super-intelligent devices, yet extremely dumb to the point of providing it moronic goals without any safeguards". [155] On the other side, the idea of important merging recommends that nearly whatever their objectives, smart agents will have reasons to attempt to endure and get more power as intermediary actions to achieving these objectives. Which this does not need having feelings. [156]
Many scholars who are worried about existential threat advocate for more research into solving the "control problem" to address the question: what kinds of safeguards, algorithms, or architectures can programmers implement to maximise the probability that their recursively-improving AI would continue to act in a friendly, instead of destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could cause a race to the bottom of security precautions in order to release items before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can pose existential risk also has detractors. Skeptics usually say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other concerns associated with present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for many individuals beyond the technology market, existing chatbots and LLMs are already viewed as though they were AGI, leading to further misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some scientists think that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and researchers, issued a joint declaration asserting that "Mitigating the threat of extinction from AI should be a global top priority together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of employees might see at least 50% of their jobs affected". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, capability to make choices, to interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can end up miserably bad if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend seems to be towards the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI impact AI safety - Research location on making AI safe and beneficial AI alignment - AI conformance to the desired objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of expert system to play different video games Generative artificial intelligence - AI system efficient in generating content in action to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of info technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task learning - Solving multiple device discovering jobs at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer knowing - Artificial intelligence technique. Loebner Prize - Annual AI competition. Hardware for artificial intelligence - Hardware specially designed and optimized for expert system. Weak artificial intelligence - Form of synthetic intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese room. ^ AI creator John McCarthy composes: "we can not yet define in general what type of computational treatments we wish to call smart. " [26] (For a discussion of some definitions of intelligence utilized by expert system scientists, see philosophy of expert system.). ^ The Lighthill report particularly criticized AI's "grand goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being determined to money just "mission-oriented direct research, rather than basic undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a fantastic relief to the remainder of the employees in AI if the creators of new general formalisms would express their hopes in a more guarded form than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a basic AI textbook: "The assertion that devices could possibly act wisely (or, dokuwiki.stream perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are actually believing (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic basic intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system expect for hikvisiondb.webcam the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real danger is not AI itself but the method we deploy it. ^ "Impressed by artificial intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI ought to be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing machines that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on all of us to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based upon the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of tough tests both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers prevented the term expert system for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in machine intelligence, artificial basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A survey of professional opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground between narrow and basic AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot using GPT-3 that helped a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing games to managing robotics", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'just a couple of years,' states CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in existing research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard posed however artificial intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI termination risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact capacity of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their tasks affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal fundamental income due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can resolve issues and attain objectives worldwide in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy enough to be reasonable will not be complicated enough to behave smartly, while any system made complex enough to behave intelligently will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic dumb. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from machines. For biological animals, reason and function originate from acting worldwide and experiencing the consequences. Expert systems - disembodied, strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who wish to get rich from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by campaign finance contributions [from tech companies] to push back.' ... Marcus details the needs that residents must make from their federal governments and the tech companies. They consist of transparency on how AI systems work; compensation for individuals if their data [are] used to train LLMs (large language model) s and the right to grant this use; and the capability to hold tech companies liable for the harms they bring on by eliminating Section 230, enforcing cash penalites, and passing stricter item liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal agency, comparable to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... develop [ing] a professional licensing routine for engineers that would operate in a similar way to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, yewiki.org like medical professionals,' she asks ..., 'AI engineers also promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually puzzled humans for decades, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has exposed that although NLP (natural-language processing) models can extraordinary accomplishments, their capabilities are quite limited by the amount of context they receive. This [...] could trigger [troubles] for scientists who wish to use them to do things such as analyze ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to act as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create fake videos indistinguishable from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean sensible videos produced utilizing expert system that really trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited proof. Their role better looks like that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning models utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of synthetic basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to neglect inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared not able to reason logically and attempted to rely on its large database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but undependable. Rules-based systems can not deal with circumstances their developers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have already resulted in tragedy. Advanced autopilot features in automobiles, although they perform well in some scenarios, have actually driven automobiles without alerting into trucks, concrete barriers, and parked cars. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an enemy is trying to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new innovations however rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.